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The mixing of a dynamical ly neutral admixture added to a stream 

flowing through a homogeneous porous medium is described by an equa- 

tion of the diffusion type with some effective diffusion coefficient 

which varies l inearly with the filter velocity in the flow region in 

which Darcy's law is obeyed [1]. According to the ideas developed in 

a whole series of papers [2-4] this process, also called convective 

diffusion, is due to the irregular nature of the porous canals through 

which the liquid moves. Molecular effects also play a definite role 

in the mechanism of mixing, and their relative contribution is greater, 

the lower the fil ter velocity, 

This paper proposes equations for convective diffusion in fissured- 

porous media with due regard to the specific nature of mixing in these 

media. The solutions of some problems are given. 

I. F.quatiom of convective diffusion in fissured-porous media,  
According to [5], fissured-porous rock is a continuous medium consist- 

ing of two sys tems-a  system of fissures and a system of blocks enclos- 

ing one another. An exchange of liquid takes place between these sys- 

te I I lS .  

Factual data relating to fissured strata indicate that the permea- 

bi l i ty kt of the fissures is several orders greater than the permeabil i ty 
k 2 of the blocks, but the porosity m~ of the fissure system is much less 

than the porosity rn~ of the blocks. It is characteristic of fissured rocks 

that the liquid flows mainly through the fissures, since the filter velo- 

city through the blocks is negligibly small in comparison with the 

filter velocity through the fissures. 

In [3] che effective coefficient of convective diffusion in an ordi- 

nary porous medium was represented in the form D = Xn + D 0 (for the 

plane unidimensional case) where D o is the coefficient of molecular 
diffusion (Do ~ 10 -5 cmZ/sec), u is the mean flow velocity, and X is 

the coefficient of longitudinal dispersion (k ~ 0.1 cm). 

As estimates show, when the filtration parameters of the blocks 

have average values (1% ~ 1-10 ~D, m 2 ~ 0.1, viscosity of liquid 

]~ ~ 1-10 cp, pressure drop Ap/Ax ~ 0.1-1 a im/m)  the value of D in 

the blocks has the order of the coefficient of molecular diffusion D0, 

At the same time, in the system of fissures, regarded as a separate 

porous medium, Xu >> D~ i . e . ,  the effect of molecular transport 

through the fissures can be neglected. 

Thus, the main feature of the mixing of a dynamical ly  neutral ad- 

mixtur e in fissured rocks is that conveetive mixing, wtlich is due to the 

disordered nature of the fissure system and porous dtlannels of the blocks 

and depends on the mean flow velocity, plays a significant role only 

in the fissure system. In weakly permeable blocks diffusion will  be due 

to a molecular type of mechanism. 

In view of the essentially different conditions of mixing in the fis- 

sures and blocks it is logical  to introduce at each point in space two 

concentrations of diffusing substance: C~ and C 2. Concentration C 1 and 

C 2 are the mean concentrations of the admixture in the fissures and 

pores of the blocks, respectively, in the v ic in i tyof the  particular point. 

A characteristic feature of mixing in the considered medium is the 

presence of a flow of the diffusing substance between the fissures and 

blocks due to the difference in concentrations in the fissure and block 

systems. Denoting by q the amount of diffusing substance passing from 
the blocks into the fissures in unit t ime per unit volume of rock we 

write the equation of mater ia l  balance in the fissure system as 

OCt 
ml " ~ -  div (Di j  grad C1 - -  VC1) --  q = 0. (1.1) 

Here V and Dij are the filter velocity and the coefficient of con- 

vect ive diffusion, respectively, in the fissure system. Neglecting 

molecular diffusion, we follow [3] and put Dij in the form 

D i j  = (~.~ - -  ~,~) I V I 6~  + ~ v i v j  / I V 1. 

Here M and X e are the coefficients of longitudinal and transverse 

dispersion in the fissure system; v i and vj are the components of the 

fil ter velocity of the flow; 6ij is the Kronecker delta. 

Neglecting the transfer of admixture through the blocks due to dif- 

fusion and convection, we obtain the equation of mater ia l  balance in 

the block system: 

m20C 2 / at -t- q = 0 .  ( 1 . 2 )  

We will  confine ourselves henceforth to the case of a steady fil tra- 

tion flow and, in accordance with the above estimates, we will  assume 

that the exchange between the fissure and block systems is effected by 

the mechanism of molecular diffusion. 

The expression for the specific counterflow q depends significantly 

on the ratio of the characteristic t ime T of the process and the char- 

acterist ic t ime for establishment of a quasistationary distribution of 

concentration in a single block r 0 ~ L2/D0, where L is the mean di- 

mension of a block. 

We consider thetwo l imi t ing  cases i n w h i c h r  0 << T and r0 ~ T. If 

To << T, the distribution of concentration within the blocks at any in- 

stant is close to the equil ibrium level,  and for the eounterflow rate q 

we can use the expression 

q = a (G - -  Ci) (1.8) 

which is an exact  analogy of the expressions used in [5, 6] for the heat 

and mass flows in the description of heat-transfer processes in hetero- 

geneous media and filtration in fissured rocks. 
The coefficient c~ has the dimension of inverse t ime and depends 

on: 1) the coefficient of molecular diffusion Do; 2) the geometric 
parameters of the medium, which determine the area of contact of the 

liquid particles present in the blocks and fissures (in unit volume of 

rock). As such parameters we can take the voidage (porosity) m 2 of 

the blocks and the specific surface o of the fissures, i . e . ,  the friction 

surface per unit volume of rock. The value of D0 is pioportional to 
�9 . 0 

the coefficient of Nfree" molecular dlffusionD and depends, generally 

speaking, on the microstructure of the rock. Assuming that the values 

of Do and D O are of the same order and using dimensional analysis, we 

obtain the est imate 

0~ N m~(I2D 0" 

We note that in this case, where the contributionofthe convective 

mechanism is commensurable with the diffusion mechanism, the co- 

efficient a can be put in the form 

~ m2~2D ~ + ~ -  ] grad p ] . (1.4) 

The second term in (1.4) takes into account the convect ive component 

of the eounterflow when the pressure distribution is steady. 

As estimates show, for the usuaI values of the diffusion coefficient 
in liquids at moderate temperatures (Do ~ 10-s-4"10 -s cm2/sec) the 

considered case of diffusion with a quasistarionary form of counter- 

flow (1.3) can occur only when the blocks are sufficiently small  (L ~ 

10 em), but when Do has larger values, which can be encountered 

at high temperatures or in the case of gas diffusion, the range of ap- 
pl icabi l i ty  of relationship (1.3) is wider, of course. 

We consider now the second case (r  0 ~ T), which occurs when the 

blocks have L ) 50-100 cm and is more interesting from the practical  

viewpoint. The transfer process in this case is essentially unsteady and 

the expression for q can be obtained, of course, from a consideration 

of the problem of diffusion in an individual block, in much the same 

way as was done in the description of capi l lary impregnation of blocks 

in a fissured-porous medium [1, 7]. 
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We wi l l  confine ourselves i n i t i a l l y  to the t imes  when the effect  of 

the f ini te  dimensions of the b lock  can be neg lec ted  and wi l l  consider 
as a rriodel the molecu la r  diffusion in a l inear  e l e m e n t  of a b lock on 
the surface of which the concentra t ion of admixture  is equal  to the 
concent ra t ion  C~ in the fissure system. We note that  this assumption, 

which g rea t ly  s impl i f ies  the expression for q, is not too res t r ic t ive  
for the case of suff ic ient ly  large blocks, s ince the effect  of the bound- 

aries of the block becomes  apprec iable  at  t imes  comparable  with the 

charac te r i s t ic  t i m e  of the process. 
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Fig. 1 

Proceeding from the known solut ion of the one -d imens iona l  hea t -  

conduct ion equat ion with a condi t ion of the first kind at the boundary 

of  a s e m i - i n f i n i t e  rod [8], a M  ca l cu l a t i ng  the flow at this boundary,  
we obtain an expression for q in the form 

t 
O f (Or - -  Co) d~" 

q = - -  a "0/~0 V ~  ' ( i . 5 )  

where C 0 is the i n i t i a l  dis tr ibut ion of concentra t ion,  and for coef f ic ien t  
a, using d imens iona l  analysis,  we obtain the es t imate  

~ ~ *  K ~ .  

We note that  a s imi la r  expression for the rate of counterflow of a 

mass of l iquid was used in [9], where the i n i t i a l  moment  of t ransient  

processes  of pressure redis t r ibut ion in a homogeneous l iquid  in a f is-  
sured-porous m e d i u m  was considered.  

For an approximate  considerat ion of the effect  of the boundaries of 

the b lock  we wi l l  represent the b lock  by a rod of length  2 l or a sphere 
of radius I .  

In these cases we obtain an expression for q in the form 

t 

o i (C~--  Co) 9 ( t - -  4) 
q = - ~ N -  V ~  (t - T) 

0 

dv, (1.6) 

where for the case of the rod 

(t) = % (o, • (1.7) 

and for the case of the sphere 

(t) = % (0, ~) - -  • (1 .8 )  

where ~ = l 2/~-D 0 t, O~ and 04 are the ta  functions. It is easy to show 

that  when x >> 1, which corresponds to the i n i t i a l  stage of the process, 

we obtain from (1.7) and (1.8), respect ively ,  ~(t) ~ 1 -- 2 exp  (-~r~) 

~ 1 and r ~ 1 - ~ - # ~  ~ 1, i . e . ,  formula  (1.6) agrees wi th  (1.5), 

and when ~ ~ 0 for both cases ~(t) ~ 2~- t /~  exp (--rr/4x) ~ 0 .  

Proceeding from re la t iomhips  (1 .5) - (1 .8)  we can  infer that  for rea l  

m e d i a  the expression for the rate of diffusion counterflow between the 

blocks and fissures can  be represented in  the form (1.6) {proposed as a 

result  of joint  discussion with B. V. Shal imov)  and the dimensionless  

function ~(t), which is independent  of the law of var ia t ion  of C~ and 

decreases m o n o t o n i c a l l y  from uni ty  to zero, w i l l  have  to be de te r -  

mined  from exper iments  on "diffusion impregna t ion"  of blocks by a 

method s imi l a r  to tha t  used by  the authors of [1O] to  inves t iga te  cap-  

i l l a ry  impregna t ion  in a fissured-porous med ium.  

We wi l l  dwel l  br ie f ly  on the spec ia l  features of the formula t ion  

and solution of problems in the considered cases .  The system of equa-  

t ions (1.1), (1.2), and (1.3) is very  s imi l a r  to the equations of the 
e las t i c  f i l t ra t ion r eg ime  in a fissured-porous med ium [5]. 

It is convenient  to solve the problems for this system by e l i m i n a t i n g  

one of the unknown functions and formula t ing  i n i t i a l  and boundary 

condit ions in terms of the required quanti ty.  In part icular ,  i f  we adopt 
the method used in [5] i t  is easy to show that  in this case the discon- 

t inui t ies  of the concentra t ion C 1 and its normal  der ivat ives  0C1/~n 
disappear  instantaneously,  and for the discont inui t ies  of Cz and 0C2/an 

we have  the relat ionships 

ct 
= t ..1,=0oxp ( -  

where n is the normal  to the fracture surface, and the sign [ ] denotes 

the discont inui ty  of the quant i ty .  
When thesys t em of equat ions(1 .1) ,  (1.2), (1 .5) - (1 .8)  is used, i t  is 

natural  to de te rmine  C i first and then to find C s from (1.2) by quadra-  

ture. The distr ibution of C 1 is continuous and the law of d iminu t ion  of 

the discont inui ty  of concent ra t ion  in the blocks follows from the ex-  

p l i c i t  form of the solution for C 2. 

2. Some problems of convec t ive  diffusion in a fissured-porous 

m e d i u m .  1. We consider the  solut ion of the un id imens iona l  problem 

of mix ing  of an in ter layer  of colored l iqu id  with other l iquid moving  

through a fissured-porous medium.  We wi l l  proceed from the system 

of  equa t iom (1 .1) - (1 .4)  and assume for s i m p l i c i t y  tha t  m t = 0. 
Let the colored l iqu id  wi th  concent ra t ion  Co at the in i t i a l  instant 

occupy the region of a r ec t i l inea r  fissured-porous s t ra tum x 1 -< x -< x v 

Outside this i n t e r l aye r  the concent ra t ion  of admix ture  at  t = 0 is zero. 

The problem reduces to solution of the equat ion  

O~C~ -4- O~C~ ~" 02C2 --  2 ~ OC~ 
b 

, ~ '  " r  b = ~ ,  D = L v  (2.1) 

with the i n i t i a l  d iscont inui ty  condi t ion 

c~ (~, 0) = C o / ( b ,  / (~) = ~ (~ - ~ )  - n (~ - -  ~ d .  (2.2) 

Here v ' s  the f i l ter  ve loc i ty  and r/(g) is a Heavis ide  function. 

As was shown above, the i n i t i a l  d iscont inui t ies  of the function C 2 

(L  T) do not disappear  instantaneously,  but d iminish  according to 

law (1.9). Thus, the required solution, understood as gene ra l i zed  in 

S. L. Sobolev's sense, is a p ieeewise -con t inuous  function with discon- 

t inu i t i es  of the first kind. It is convenient  to seek  the solut ion of prob- 

l e m  (2.1) and (2.2) in the form 

c~ (~, 4) / Co = ~ (~, 4) + exp ( - 4  / b) / (~), 

where u (~, T) is a suff ic ient ly  smooth function, which, as can  eas i ly  

be shown, satisfies the equa t ion  

OSu Oh,~ 02u Ou Ou 1 
b a ~ - } - - ~ - - 2 b a - ~ - - 2 - ~ - - - ~ - - [ -  - ~ - e x p ( - - ~ / b ) = 0  (2.3) 

and zero i n i t i a l  condi t ion [u (~, 0) -= 0]. Applying the Fourier t rans-  

format ion  in va r i ab le  { to (2.3) we obtain for the t ransformant  U (v, r )  

the equa t ion  

(b'~* + 2 b~i + t)  d U / d ' c + v O , + 2  i) U = F (% 4), 

U (~, T) = ~ u (~, •) e 4v~ d~, 

i exp  ( - -  T / b) (e_iv~ ' _ e_iV~, ) (2 .4)  
F (v, ~) - -  K ~ b v  

with  i n i t i a l  condi t ion U (v, O) = O. Dete rmin ing  U (u, r )  and using the 

Fourier t ransformat ion formula,  we obtain the solut ion in the form 
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c~  ( ~ , ~ )  = [n (~ - -  ~*) - -  n (~ - -  $ . )]e  -=/b + 

co 

+ n ~ [ cos 2 v - -  

[ bv~+(t+4b)v~ ] [2~.--g.,--~.~ 
- -exp  --(l_t_bv,)~_4b~v 2 -c .cos 2 v - -  

2-~,~ ~1- sin ~ (~1 - -  ~_) ~ '  (1 + b ~ - +  ably ~ j j  X ~ ~ . (2.5) 

The distribution for the concentration in the fissures will be a con- 
tinuous function and is found from Eq. (1.2). 

Expanding the exponential functions contained in the formulas for 
C~ and C z in a series and retaining terms of the order 7, we obtain a 
representation of the concentration in the fissures and blocks for small 
r. Without writing out the obtained expressions, we give the results of 
the calculations. 

Figure 1 shows graphs of the functions Cz (g, v) (solid lines), 

Cz (g, 7") (dashed) for the case b = 1, gl = -1,  g~ = +1, and r = %1 
(curves 1) and r = 0.2 (curves 2). The same figure shows the curves 
(dot-dash lines) calculated from the known solution of the analogous 
problem in an ordinary porous medium, 

1. We consider now the problem of propagation of an admixture in 
a plane-radial steady flow, where in a well of radius r0, tapping an 
initially "pure" infinite layer, a constant concentration C ~ of admix- 
ture is maintained. 

Usingthe system of equations (1.1), (1.2), and (1.5), and putting m~ = 
= 0, we obtain the boundary- value problem for the determination of C~: 

0 ~CI OC~ 0 ~ C~ d~ / 2nha\ 

C~ (to, t) = C ~ C~ (t, co) ~ O. (2.6) 

Here Q is the output of the well and h is the thickness of the stra- 
tum. Applying the Laplace transformation to (2.6) we obtain an equa- 
tion for the image of U (y, s), 

d~U dU ~, 
dy~ dj TyU=O, U(y, ~ ) ~ ,  C~(y,t) e -stdt 

o 

U (yo, s) = C~ U (oo, s) = O, 

= . I~ ,  yo  = , o / L  "r = ~x~ 1 , ' 7 .  ( 2 . 7 )  

PuttingU =exp(0.5  y) V, z :0 .25  (1 + 4 y y )  we bring (2.7) to the 
form 

d2V z 
- ~  V =O. (2.8) dz~ 

The general solution of (2.8) has the form 

_~-F / 2 i  , . \  By  ( 2 i  .'h~] 
/J" 

H e r e  J1/a and Yi/3 are standard symbols of Bessel functions; A and 
B are arbitrary constants. Reverting to the initial variables and using 
the boundary conditions, we obtain the solution of problem (2.7), (2.8) 
after some transformations in the form 

C o 

\ t  +4790] K~l.(O(yo)) 

(0(~)= (i +_~y)v~ (2.9) 
12~ 7' 

Here KV3 is the symbol of a Macdonald function. 

In the general case transformation (2.9) leads to a fairly difficult 
expression. Estimates show, however, that in the range of real values 

of the parameters (Q ~ 50 mS/day, m z ~ 0.2, h ~ 10m, L ~ 100 cm), 

t ~ 500 m, and for not very small values of time the argument of func- 

tions 1<1/s is large, and in this case, putting Y0 = 0 for simplicity, we 

obtain an expression for U in the form 

U (y, s) = C~ -1 (t - -  W) exp (--  05 7g~). (2o10) 

Transforming (2.10), we find the solution for C 1 in the form 

c~ (~, ~) 2 
Co = erfc r I - -  - ~  ~ ] / ~  exp (.-- ~]2) 

(2.11) 

Using (1.2), we obtain 

C ~ -~-[exp(- -~  1 )-- ]/'~'~(~ -1- ] / ~ e r f e  n] 

g~md (2.12) 

Figure 2 gives the results of calculations from formulas (2.11) and 

(2.12) forthecase~ = 10-Tand ~ = 10-3(curvesl), ~ = 5.10-4(curves2). 

go i i : f 
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Fig. 2 

As the considered problems show, the characteristic feature of the 
mechanism of convective diffusion in a fissured-porous medium is the 
relatively rapid propagation of admixture through the fissures and the 
Very appreciable retardation of this process in weakly permeable bloc ks. 

In conclusion the author thanks Yu. P, Zheltov for suggesting the 
theme and guidance in the work, and G. I. Barenblatt and V. M. 
Entov for valuable comments. 
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