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CONVECTIVE DIFFUSION IN FISSURED-POROUS MEDIA
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The mixing of a dynamically neutral admixture added to a stream
flowing through a homogeneous porous medium is described by anequa-
tion of the diffusion type with some effective diffusion coefficient
which varies linearly with the filter velocity in the flow region in
which Darcy’s law is obeyed [1]. According to the ideas developed in
a whole series of papers [2~4] this process, also called convective
diffusion, is due to the irregular nature of the porous canals through
which the liquid moves, Molecular effects also play a definite role
in the mechanism of mixing, and their relative contribution is greates,
the Iower the filter velocity,

This paper proposes equations for convective diffusion in fissured-
porous media with due regard to the specific nature of mixing in these
media, The solutions of some problems are given.

1. Equations of convective diffusion in fissured-porous media.
According to (5], fissured-porous rock is a continuous medium consist-
ing of two systems—a system of fissures and a system of blocks enclos-
ing one another. An exchange of liquid takes place between these sys-
tems.

Factual data relating to fissured strata indicate that the permea-
bility ky of the fissures is several orders greater than the permeability
k, of the blocks, but the porosity m, of the fissure system is much less
than the porosity m, of the blocks. It is characteristic of fissured rocks
that the liquid flows mainly through the fissures, since the filter velo-
city through the blocks is negligibly small in comparison with the
filter velocity through the fissures,

In [3] the effective coefficient of convective diffusion in an ordi-
nary porous medium was represented in the form D = Au + D (for the
plane unidimensional case) where Dy is the coefficient of molecular
diffusion (Dg ~ 107% cm?/sec), u is the mean flow velocity, and X is
the coefficient of longitudinal dispersion (A ~ 0.1 cm).

As estimates show, when the filtration parameters of the blocks
have average values (k, ~1-10 uD, m, ~ 0.1, viscosity of liquid
@~ 1-10 cp, pressure drop Ap/Ax ~0,1-1 atm/m) the value of D in
the blocks has the order of the coefficient of molecular diffusion Dy.
At the same time, in the system of fissures, regarded as a separate
porous medium, A1 > Dy, i.e., the effect of molecular transport
through the fissures can be neglected.

Thus, the main feature of the mixing of a dynamically neutral ad-
mixture in fissured rocks is that convective mixing, which is due to the
disordered nature of the fissure system and porous channels of the blocks
and depends on the mean flow velocity, plays a significant role only
in the fissure system. In weakly permeable blocks diffusion will be due
to a molecular type of mechanism,

In view of the essentially different conditions of mixing in the fis-
sures and blocks it is logical to introduce at each point in space two
concentrations of diffusing substance: C, and G,. Concentration C, and
C, are the mean concentrations of the admixture in the fissures and
pores of the blocks, respectively, in the vicinity of the particular point.

A characteristic feature of mixing in the considered medium is the
presence of a flow of the diffusing substance between the fissures and
blocks due to the difference in concentrations in the fissure and block
systems. Denoting by q the amount of diffusing substance passing from
the biocks into the fissures in unit rime per unit volume of rock we
write the equation of material balance in the fissure system as

aC.
ma - — div (Dj grad C; — VCi) — g =0. a.1)
Here V and Djj are the filter velocity and the coefficient of con-
vective diffusion, respeetively, in the fissure system. Neglecting

molecular diffusion, we follow [3] and put Djj in the form

Dij= (A —ha) | V85 + Aoy /| V |-
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Here XAy and X, are the coefficients of longitudinal and transverse
dispersion in the fissure system; v; and vj are the components of the
filter velocity of the flow; 6;; is the Kronecker delta,

Neglecting the transfer of admixture through the blocks due to dif-
fusion and convection, we obtain the equation of material balance in
the block system:

mgdCs [0t 4 g =0. (1.2)

We wiil confine ourselves henceforth to the case of a steady filtra-
tion flow and, in accordance withthe above estimates, we will assume
that the exchange between the fissure and block systems is effected by
the mechanism of molecular diffusion,

The expression for the specific counterflow q depends significantly
on the ratio of the characteristic time T of the process and the char-
acteristic time for establishment of a quasistationary distribution of
concentration in a single block 7, ~ 12/D 0, where L is the mean di-
mension of a block,

We considerthe two limiting cases inwhichry «< Tand 7 5 T, If
Ty < T, the distribution of concentration within the blocks at aay in-
stant is close to the equilibrium level, and for the counterflow rate g
we can use the expression

g=a(C,—Cy) (1.3)

which is an exact analogy of the expressions used in [5, 6] for the heat
and mass flows in the description of heat-transfer processes in hetero-
geneous media and filtration in fissured rocks.

The coefficient o has the dimension of inverse time and depends
on: 1) the coefficient of molecular diffusion Dy; 2) the geometric
parameters of the medium, which determine the area of contact of the
liquid particles present in the blocks and fissures (in unit volume of
rock). Assuch parameters we can take the voidage (porosity) m, of
the blocks and the specific surface o of the fissures, i.e,, the friction
surface per unit volume of rock. The value of Dy is proportional to
the coefficient of “free” molecular diffusionD® and depends, generally
speaking, on the microstructure of the rock. Assuming that the values
of Dy and D° are of the same order and using dimensional analysis, we
obtain the estimate

o ~ my02D0,

We note that in this case, where the contribution of the convective
mechanism is commensurable with the diffusion mechanism, the co-
efficient o can be put in the form

ko
o ~ mes2D0 v |grad p|. 1.4)

The second term in (1.4) takes into account the convective component
of the counterflow when the pressure distribution is steady.

As estimates show, for the usual values of the diffusion coefficient
in liquids at moderate temperatures (Dg ~ 107%-4107° cm?/sec) the
considered case of diffusion with a quasistationary form of counter-
flow (1.8) can occur only when the blocks are sufficiently small (L ~
~10 cm), but when Dy has larger values, which can be encountered
at high temperatures or in the case of gas diffusion, the range of ap-
plicability of relationship (1.3) is wider, of course.

We consider now the second case (74 > T), which occurs when the
blocks have L 350~100 cm and is more interesting from the practical
viewpoint. The transfer process in this case is essentially unsteady and
the expression for q can be obtained, of course, from a consideration
of the problem of diffusion in an individual block, in much the same
way as was done in the description of capillary impregnation of blocks
in a fissured-porous medium [1, 7].
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We will confine ourselves initially to the times when the effect of
the finite dimensions of the block can be neglected and will consider
as a miodel the molecular diffusion in a linear element of a block on
the surface of which the concentration of admixture is equal to the
concentration C; in the fissure system. We note that this assumption,
which greatly simplifies the expression for q, is not too restrictive
for the case of sufficiently large blocks, since the effect of the bound-
aries of the block becomes appreciable at times comparable with the
characteristic time of the process,

Fig, 1

Proceeding from the known solution of the one-dimensional heat-
conduction equation with a condition of the first kind at the boundary
of a semi-infinite rod [8], and calculating the flow at this boundary,
we obtain an expression for q in the form

t
_a_g (C1—Co)dx w5

TR ) YR

where Cy is the initial distribution of concentration, and for coefficient
a, using dimensional analysis, we obtain the estimate

a ~mys YV DO,

We note that a similar expression for the rate of counterflow of a
mass of liquid was used in [9], where the initial moment of transient
processes of pressure redistribution in a homogeneous liquid in a fis-
sured-porous medium was considered.

For an approximate consideration of the effect of the boundaries of
the block we will represent the block by a rod of length 21 or a sphere
of radius .

In these cases we obtain an expression for q in the form

t
iS (C1—Co)@(t—1)
0

==Y Vaa—w dv , (1.6)

where for the case of the rod
? (1) = 0,0, %), .m

and for the case of the s;;here
P (1) = 05(0,w) — w7, (1.8)

where w= 12/7Dt, 6; and 6, are theta functions, It is easy to show
that when % >1, which corresponds to the initial stage of the process,
we obtain from (1.7) and (1.8), respectively, ¢(t) ~ 1 — 2exp (=T ~
~1and @(t) ~1 ~ w ¥t ~1 e, formula (1.6) agrees with (1.5),
and when 1 ~ 0 for both cases g(t) ~ Zu-/2 exp (—n/4x) ~0.

Proceeding from relationships (1.5)—(1.8) we can infer that for real
media the expression for the rate of diffusion counterflow between the
blocks and fissures can be represented in the form (1.6) {proposed as a
result of joint discussion with B. V. Shalimov) and the dimensionless
function ¢(t), which is independent of the law of variation of C, and
decreases monotonically from unity to zero, will have to be deter-
mined from experiments on "diffusion impregnation” of blocks by a
method similar to that used by the authors of [10] to investigate cap-
illary impregnation in a fissured-porous medium,

We will dwell briefly on the special features of the formulation
and solution of problems in the considered cases. The system of equa-
tions (1.1), (1.2), and (1.3) is very similar to the equations of the
elastic filtration regime in a fissured -porous medium [5].

It is convenient to solve the problems for this system by eliminating
one of the unknown functions and formulating initial and boundary
conditions in terms of the required quantity. In particular, if we adopt
the method used in [5] it is easy to show that in this case the discon-~
tinuities of the concentration C; and its normal derivatives 9C,/0n
disappear instantaneously, and for the discontinuities of C, and 9C,/8n
we have the relationships

[Cal = [Cal g 050 (— 7 ) »
{ai} [%iz] exp (—— % t), (1.9)

where n is the normal to the fracture surface, and the sign [ ] denotes
the discontinuity of the quantity,

When the system of equations (1.1), (1.2), (1.5)=(1.8) is used, it is
natural to determine C, first and then to find G, from (1.2) by quadra-
ture, The distribution of C, is continuous and the law of diminution of
the discontinuity of concentration in the blocks follows from the ex-
plicit form of the solution for G,.

2. Some problems of convective diffusion in a fissured=porous
medium. 1. We consider the solution of the unidimensional problem
of mixing of an interlayer of colored liquid with other liquid moving
through a fissured-porous medium. We will proceed from the system
of equations (1,1)=(1.4) and assume for simplicity that m; = 0,

Let the colored liquid with concentration Cjat the initial instant
occupy the region of a rectilinear fissured-porous stratum x; =X = x,.
Outside this interlayer the concentration of admixture at t = 0 is zero,

The problem reduces to solution of the equation

#BCy 920, 6202 aC, 0Cs

bz T o —25Er— 23 =0
( 2%t 2 9
E—ZD,17=4m2D,b=m),D=7w) (2.1)

with the initial discontinuity condition

CEBO=Ci (B, FE=mE—t)—-nE—k. @2

Here v ‘s the filter velocity and 7(£) is a Heaviside function.

As was shown above, the initial discontinuities of the function C,
(&, 7) do not disappear instantaneously, but diminish according to
law (1.9). Thus, the required solution, understood as generalized in
S. L. Sobolev's sense, is a piecewise-continuous function with discon-
tinuities of the first kind. It is convenient to seek the solution of prob-
lem (2.1) and (2.2) in the form

Co(E 0/ Co=uE v +exp(—1/D)f(E),

where u (£, 7) is a sufficiently smooth function, which, as can easily
he shown, satisfies the equation

Pu d2u %u ou  Ou 1
bm‘l‘-a?z—— 63231‘ 235 3t+7;exp(—1:/b)=0 (2.3)
and zero initial condition [u (£, 0) = 0], Applying the Fourier trans-
formation in variable £ to (2.3) we obtain for the transformant U (v, T)
the equation

@i+ 2bvi+ AU /dr+v(v+ 2 U = F (v, 1),

U, v u(k, v) Rz,

4 ¢
)=ﬁ§m
iexp(—t/b)

‘1"5.:_ —ivEs
Vorte (e e WE1) (2.4)

Fv, 1)=

with initial condition U (v, 0) = 0. Determining U (v, 7) and using the
Fourier transformation formula, we obtain the solution in the form
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Cy (B, v) =[N {(§— &) — 1 (E— Ex)le™™ &

2 ¢ 2
+ —S {e""'/b c0s ~——~E— 1

R 2
Bt -k (1 - 4b) v2 [9F — £ —
—exp|— Y ] oos[ Y =R,
2oy V(B — ) dv
— e || x s TEE (2.5)

The distribution for the concentration in the fissures will be a con-
tinuous function and is found from Eq. (1.2).

Expanding the exponential functions contained in the formulas for
C; and G, in a series and retaining terms of the order 7, we obtain a
representation of the concentration in the fissures and blocks for small
7, Without writing out the obtained expressions, we give the results of
the calculations,

Figure 1 shows graphs of the functions C, (§, 7) (solid lines),
Gy (&, 7) (dashed) forthe case b =1, &, = -1, & =+, and 7 = 0,1
(curves 1) and 7 = 0.2 (curves 2), The same figure shows the curves
(dot-dash lines) calculated from the known scolution of the analogous
problem in an ordinary porous medinm,

1. We consider now the problem of propagation of an admixture in
a plane-radial steady flow, where in a well of radius rp, tapping an
initially "pure™ infinite layer, a constant concentration G® of admix-
ture is maintained.

Usingthe system of equations (1.1), (1.2), and (1,5), and putting m; =
=0, weobtain the boundary~value problem for the determinationof C;:

t
6201 601 J Cld'r 2nha
T e T 'azéy——w,,)—o 6=
Cylro, H=C°%  Cr(t, ) =0. (2.6)

Here Q is the output of the well and h is rhe thickness of the stra-
tum, Applying the Laplace transformation to (2.6) we obtain an equa-
tion for the image of U (y, ),

ool
L% au >
”dy—z"gy——yyU:O, Uy, s} = ) Cl(y,t}eStdt
0
U (yo, 5) = C%s, U (o0, 5) = 0,
y = rlh, Yo = rofh, T=PA2 V5. 2.7

Putting U = exp (0.5 y) V, z = 0.25 (1 + 4 yy) we bring (2.7) to the
form

av z
Iz —?*VZO. (2.8)

The general solution of (2.8) has the form
Vi —V'AJ(Z iz By(‘%)
(2, 8) = z E z )‘l‘ Y.\ 3y .

Here Iy, and Y, /g 218 standard symbols of Bessel functions; A and
B are arbitrary constants, Reverting to the initial variables and using
the boundary conditions, we obtain the solution of problem (2.7), (2.8)
after some transformations in the form

o

Ky, (0(y)
Ky, (0 (o))

c y—yo\ [ 14 dyy \ P
Uly, s) =5 exf’( 2 (1+4T!Io>

(1+ 4Ty)“f>

(0(y)= 127 (2.9)

Here K/, is the symbol of a Macdonald function.

In the general case transformation (2.9) leads to a fairly difficult
expression, Estimates show, however, that in the range of real values
of the parameters (Q > 50 ms/day, m, ~ 0.2, h~10m, L ~100 cm),

£ 500 m, and for not very small values of time the argument of func-
tions Kyfg 1 large, and in this case, putting y, = 0 for simplicity, we

obtain an expression for U in the form
U@ ) = C°s (1 — 1y) exp (— 0.5 7). (2.10)
Transforming (2.10), we find the solution for C; in the form

Cy (L, 2 —
_1%'& =erfcn— —V_RZ V1 exp (— )

(=9 -1)

(2.11)

Using (1.2), we obtain

G (C m C [exp (—n?) — VTIZT] €+ V"I) erfe 1]

2afA2
2.12
( V‘m2> ¢ )

Figure 2 gives the results of calenlations from formulas (2 11) and
(2.12) forthecase ¢ = 10~ and§ = 10 (curvesl), £ = 5.107 (curvesZ)
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Fig. 2

As the considered problems show, the characteristic feature of the
mechanism of convective diffusion in a fissured-porous medium is the
relatively rapid propagation of admixture through the fissures and the
very appreciableretardation of this process in weakly permeable blocks.

In conclusion the author thanks Yu, P, Zheltov for suggesting the
theme and guidance in the work, and G, I Barenblatt and V., M.
Entov for valuable comments.
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